Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations.

Bayesian nonparametric regression with dependent wavelets has dual shrinkage properties: there is shrinkage through a dependent prior put on functional differences, and shrinkage through the setting of most of the wavelet coefficients to zero through Bayesian variable selection methods. The methodology can deal with unequally spaced data and is efficient because of the existence of fast moves i...

متن کامل

Model Selection for Cepheid Star Oscillations

Cepheid variables are a class of pulsating variable stars with the useful property that their periods of variability are strongly correlated with their absolute luminosity. Once this relationship has been calibrated, knowledge of the period gives knowledge of the luminosity. This makes these stars useful as “standard candles” for estimating distances in the universe. This paper updates and expa...

متن کامل

Bayesian Wavelet Shrinkage for Nonparametric Mixed-effects Models

The main purpose of this article is to study the wavelet shrinkage method from a Bayesian viewpoint. Nonparametric mixed-effects models are proposed and used for interpretation of the Bayesian structure. Bayes and empirical Bayes estimation are discussed. The latter is shown to have the Gauss-Markov type optimality (i.e., BLUP), to be equivalent to a method of regularization estimator (MORE), a...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Bayesian shrinkage

Penalized regression methods, such as L1 regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Science

سال: 2012

ISSN: 0883-4237

DOI: 10.1214/11-sts384